Climate Change Mitigation and Sustainable Development: Cooperation between Japan and India

R. K. Pachauri

23 July 2012 IGES-TERI Joint Symposium

Director-General, The Energy and Resources Institute

Chairman, Intergovernmental Panel on Climate Change

Observed Changes

at 3.1mm/yr

2

Source : IPCC

Some observed changes in Japan and India

Droughts

Source : IPCC

- Hot days and multiple-day heat waves have become more frequent in the past century. India has seen an increase in deaths due to heat stress in recent years.
- Consecutive droughts between 2000 and 2002 caused crop failures, mass starvation and affected ~11 million people in Orissa, India.
- Parts of South Asia has experienced serious and recurrent floods and parts South-East Asia has experienced increased occurrences of extreme rains, which have caused flash floods.

3

 Japan experienced serious flooding in 2004 due to heavy rains brought by 10 typhoons

Possible abrupt or irreversible impacts

	 Partial loss of ice sheets on polar land could imply metres of sea level rise, major changes in coastlines and inundation of low-lying areas 	
	 20-30% of species are likely to be at risk of extinction if increases in warming exceed 1.5-2.5°C 	
Fource : IPCC	 Large scale and persistent changes in Meridional Overturning Circulation would have impacts on marine ecosystem productivity, fisheries, ocean CO2 uptake and terrestrial vegetation 	-

Projected impacts

Agriculture

Food security

Source : IPCC

- The gross per capita water availability in India is projected to decline from ~1820 m³/yr in 2001 to as low as ~1140 m³/yr in 2050.
- In certain scenarios, rice yield could decrease up to 40% even in irrigated lowland areas of central and southern Japan.
- Studies suggest a 2 to 5% decrease in yield potential of wheat and maize for a temperature rise of 0.5 to 1.5°C in India
- Net cereal production in South Asia could decline between 4 to 10% by 2100. Changes in cereal crop production potential indicate increasing stress on resources in many of Asia's developing countries.

Projected impacts (cont.)

this century

The progressive acidification of oceans is expected to have negative impacts on marine shell-forming organisms (e.g. corals) and their dependent species.

Forests

Flooding

Potential impacts of one metre sea-level rise include inundation of

About 90% of the suitable habitat for a dominant forest species, beech tree (Fagus crenata), in Japan could disappear by the end of

5,763 km² in India and 2,339 km² in some big cities of Japan.

Vulnerability of coastal zones

Asian megadeltas especially are key societal hotspots of coastal vulnerability

Impacts of climate change on development

Without appropriate measures:

 Will likely exacerbate poverty and slow down economic growth in developing countries 7

8

 Will act as a 'threat multiplier', especially in developing countries

Climate change adds to the list of stressors that challenge our ability to achieve the ecologic, economic and social objectives that define sustainable development

Role and limits of adaptation

- Societies have a long record of adapting to the impacts of weather and climate
- Adaptation is necessary to address impacts resulting from the warming which is already unavoidable due to past emissions
- Adaptation to the impacts of climate change & promotion of sustainable development share common goals

But adaptation alone is not expected to cope with all the projected effects of climate change

Source : IPCC

Adaptation and Mitigation

"Neither adaptation nor mitigation alone can avoid all climate change impacts; however, they can complement each other and together can significantly reduce the risks of climate change"

- IPCC Fourth Assessment Report

Characteristics of Stabilization Scenarios

Post-TAR stabilization scenarios

Stabilization level (ppm CO2-eq)	Global mean temp. increase (°C)	Year CO2 needs to peak	Global sea level rise above pre- industrial from thermal expansion (m)
445 – 490	2.0 - 2.4	2000-2015	0.4 - 1.4
490 – 535	2.4 – 2.8	2000-2020	0.5 – 1.7
535 – 590	2.8 - 3.2	2010-2030	0.6 - 1.9
590 – 710	3.2 – 4.0	2020-2060	0.6 – 2.4

11

Source : IPCC

Impacts of mitigation on GDP growth

Co-benefits of mitigation

- **Common drivers** lie behind mitigation policies and policies addressing economic development, poverty, health, employment, energy security, and local environmental protection
- Linking policies may provide the opportunity for no-regrets policies, reducing greenhouse gases mitigation costs

CO2 mitigation potential for 2010 without a net cost in India: between 13 and 23% of business as usual scenario

Source : IPCC

Mitigation capacity

 All stabilization levels assessed can be achieved by deployment of a portfolio of technologies that are currently available or expected to be commercialized in coming decades.

 This assumes that investment flows, technology transfer and incentives are in place for technology development.

Mitigation in the energy supply sector

Examples of currently commercially available options

- Improved supply and distribution efficiency
- Fuel switching from coal to gas
- Renewable heat and power (e.g. hydropower, solar, wind, geothermal, bioenergy)
- Combined heat and power
- Early applications of carbon dioxide capture and storage (CCS)

60-80% of GHG reductions would come from energy supply & use and industrial processes

Source : IPCC

Renewable energy and mitigation

- RE has a large potential to mitigate GHG emissions
- There is no obvious dominant RE technology at the global level
- Individual studies indicate that if RE deployment is limited, mitigation costs increase and low GHG concentration stabilizations may not be achieved

Renewable Energy and Sustainable Development

- RE can accelerate access to energy, particularly for the 1.4 billion people without access to electricity and the additional 1.3 billion people using traditional biomass.
- RE deployment might reduce vulnerability to supply disruptions and market volatility.
- Lowered risk of severe accidents
- RE can provide environmental and health benefits

Average global cumulative RE investment needs in the power sector are below 1% of the world GDP

Source : IPCC SRREN

Current Japan-India Collaboration: Low-Carbon Energy Solutions for MSME

TERI-IGES-JICA "Science and Technology Research Partnership for Sustainable Development" (2010 – 2014)

- Micro, Small and Medium Enterprises (MSME) account for 45% of India's manufacturing output
- The focus of this project is the promotion of low carbon technologies in India's Small and Medium Enterprises
- Identified low carbon technologies include Small Gas and Electric Heat Pumps for heating and cooling applications

TERI projects in Mitigation, Renewable Energy and Sustainable Development

Biomass Gasifier

Cold Storage/Power

Source : TERI

- TERI's biomass gasifer technology converts biomass into clean gaseous fuel that can be used for small scale, rural power generation.
- TERI's Enhanced Acidification and Methanation Process creates biogass (methane and CO₂) from many kinds of organic waste including agricultural residues, aquatic plants and kitchen waste.
- TEAM is suitable for small and decentralized applications and has low maintenance costs.
- TERI's Solar-Biomass Hybrid Cold Storage/Power Generation System uses solar energy and biomass to provide small scale cold storage and electricity generation to villages.

Potential Areas of Collaboration

Gasification

- Development of a gasifier for loose biomass (rice husk, bagasse and stalks) with fuel flexibility
- Development of steam gasification system for hydrogen-rich syngas production

Biofuels & Biochemicals

- Biomass liquification using super critical fluid technology for fuels and chemicals
- Production of bio-oils and bio-chemicals from biomass and industrial wastes
- Production of liquid fuels from syngas

Towards sustainable development

Committing to alternative development paths would require **changes** both in developed and developing countries, in a variety of areas:

- Institutional arrangements
- Geographical distribution of activities

21

Lifestyles and consumption patterns

The dominant path to industrialisation has been characterised by high concurrent GHG emissions and natural resource consumption

Source : IPCC

"A technological society has two choices.

First it can wait until catastrophic failures expose systemic deficiencies, distortion and self deceptions...

Secondly, a culture can provide social checks and balances to correct for systemic distortion prior to catastrophic failures"

- Mahatma Gandhi